Our Great Posts

Electrogalvanization

  • 0 Comments
  • December 14, 2022
  • by admin
  • Electrogalvanization,
  • Leave a comment

Electrogalvanizing is a process in which a layer of zinc is bonded to steel in order to protect against corrosion. The process involves electroplating, running a current of electricity through a saline/zinc solution with a zinc anode and steel conductor. Such Zinc electroplating or Zinc alloy electroplating maintains a dominant position among other electroplating process options, based upon electroplated tonnage per annum. According to the International Zinc Association, more than 5 million tons are used yearly for both hot dip galvanizing and electroplating.[1] The plating of zinc was developed at the beginning of the 20th century. At that time, the electrolyte was cyanide based. A significant innovation occurred in the 1960s, with the introduction of the first acid chloride based electrolyte.[2] The 1980s saw a return to alkaline electrolytes, only this time, without the use of cyanide. The most commonly used electrogalvanized cold rolled steel is SECC, acronym of “Steel, Electrogalvanized, Cold-rolled, Commercial quality”. Compared to hot dip galvanizing, electroplated zinc offers these significant advantages:

Lower thickness deposits to achieve comparable performance
Broader conversion coating availability for increased performance and colour options
Brighter, more aesthetically appealing, deposits

Zinc plating was developed, and continues to evolve, to meet the most challenging corrosion protection, temperature, and wear resistance requirements. Electroplating of zinc was invented in 1800 but the first bright deposits were not obtained until the early 1930s with the alkaline cyanide electrolyte. Much later, in 1966, the use of acid chloride baths improved the brightness even further. The latest modern development occurred in the 1980s, with the new generation of alkaline, cyanide-free zinc. Recent European Union directives (ELV/RoHS/WEEE)[3] prohibit automotive, other original equipment manufacturers (OEM) and electrical and electronic equipment manufacturers from using hexavalent chromium (CrVI). These directives, combined with increased performance requirements by the OEM, has led to an increase in the use of alkaline zinc, zinc alloys and high performance trivalent passionate conversion coatings.

During the 1980s with the first alkaline Zn/Fe (99.5%/0.5%) deposits and Zn/Ni (94%/6%) deposits were used. Recently,[when?] the reinforcement of the corrosion specifications of major European car makers and the End of Life Vehicles Directive (banishing the use of hexavalent chromium (CrVI) conversion coating) required greater use of alkaline Zn/Ni containing between 12 and 15% Ni (Zn/Ni 86/14).[4] Only Zn/Ni (86%/14%) is an alloy while lower content of iron, cobalt and nickel leads to co-deposits. Zn/Ni (12–15%) in acidic and alkaline electrolytes is plated as the gamma crystalline phase of the Zn-Ni binary phase diagram.

The corrosion protection afforded by the electrodeposited zinc layer is primarily due to the anodic potential dissolution of zinc versus iron (the substrate in most cases). Zinc acts as a sacrificial anode for protecting the iron (steel). While steel is close to ESCE= -400 mV (the potential refers to the standard Saturated calomel electrode (SCE), depending on the alloy composition, electroplated zinc is much more anodic with ESCE= -980 mV. Steel is preserved from corrosion by cathodic protection. Conversion coatings (hexavalent chromium (CrVI) or trivalent chromium (CrIII) depending upon OEM requirements) are applied to drastically enhance the corrosion protection by building an additional inhibiting layer of Chromium and Zinc hydroxides. These oxide films range in thickness from 10 nm for the thinnest blue/clear passivates to 4 µm for the thickest black chromates.

Additionally, electroplated zinc articles may receive a topcoat to further enhance corrosion protection and friction performance

The modern electrolytes are both alkaline and acidic:

Read more: Electrogalvanization